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Abstract—A direct communication facility, called DCFA, for
a many-core based cluster, whose compute node consists of
many-core units connected to the host via PCI Express with
Infiniband, is designed and evaluated. Because a many-core
unit is a device of the PCI Express bus, it is not capable of
configuring and initializing the Infiniband HCA, according to
the PCI Express specification. This means that the host has to
assist memory transfer between many-core units, and thus extra
communication overhead is incurred. In DCFA, the internal
structures of the Infiniband HCA are distributed to both the
memory space of the host and that of the many-core unit. After
the host CPU configures and initializes the HCA, it obtains
the addresses of both the HCA and the internal structures
assigned by the host. Using the information given by the host
and the internal structures assigned in the many-core memory
area, the many-core unit may transfer data directly between
other many-core units using the HCA without host assists. The
implementation of DCFA is based on the Mellanox Infiniband
HCA and Intel’s Knights Ferry. Preliminary results show that,
for large data transfer, the latency of DCFA delivers the same
performance as that of host to host data transfer.

Keywords-cluster; direct communication; many-core; infini-
band; accelerator;

I. INTRODUCTION

Accelerator-based PC clusters, in which a node is formed

by a PC server with floating-point calculation accelerators

such as GPGPU, are now widely available. Indeed, three of

the peta-scale supercomputers ranked in the November 2011

top500 [1] are GPGPU-based PC clusters. Intel announced

an x86-based many-core architecture called Intel R© Many

Integrated Core (Intel R© MIC) architecture at ISC 2010. Intel

also announced that the first commercial product based on

Intel MIC architecture codenamed Knights Corner, achieved

1 Tflops of double precision floating point performance on

first silicon, and connected to the host via the PCI Express

bus, at the SC11 conference [2]. Knights Corner will have

greater than 50 cores and will be based on Intel’s 22nm

process technology.

There are two kinds of parallel execution models possible

in such an accelerator-based cluster system: the host-assisted

parallel execution model and the standalone parallel execu-

tion model. In the host-assisted parallel execution model, a

program running in a host CPU dispatches number crunching

computations to an accelerator by transferring them from host

memory to accelerator memory. Communication between

compute nodes is handled by the host CPU. In this execution

model, data are moved between the GPGPU and the host,

and between the host and the remote host. These extra

data movements result in communication overhead. GPGPU-

based cluster systems follow this execution model because

GPGPU is not capable of controlling communication devices,

such as the Infiniband Host Channel Adapter (Infiniband

HCA).

In the other parallel execution model, the standalone par-

allel execution model in an accelerator-based cluster system,

not only number crunching computation but also communica-

tion handling is executed in the accelerator unit. If this execu-

tion model were implemented, low overhead communication,

i.e., low latency, would be achieved. Thus, this model would

provide strong scalability, i.e., scalability for a fixed problem

size. However, current GPGPU-based cluster systems cannot

implement this model because GPGPU is not capable of

writing commands to communication devices.

Unlike current GPGPUs, a many-core based accelerator

such as Knights Corner can write commands to a communi-

cation device if the PCI Express device address is given by

the host. However, according to the PCI Express standard,

the accelerator, a device in PCI Express, cannot configure

devices and cannot receive interrupts from devices. Thus, it

is not a straightforward task to implement the standalone

parallel execution model in accelerator-based clusters.

This paper designs a direct communication facility for

many-core based accelerators, called DCFA, to implement

the standalone parallel execution model. The implementation

of DCFA is based on the Mellanox Infiniband HCA and

Intel’s Knights Ferry, a software development predecessor

of Knights Corner. Internal structures of the HCA are care-

fully distributed to memory areas of both the host and the

accelerator so that the accelerator transfers its memory area

directly to/from either remote host or remote accelerator. The

host CPU configures and initializes the Infiniband HCA.

After introducing the background of this paper in the

following section, the design of DCFA is presented in Section

III. In Section IV, the experimental environment, evaluation

scenarios and results are presented. After presenting related

work in Section V, this paper will be concluded with a

discussion of future work in Section VI.

II. BACKGROUND

Information Technology Center at the University of Tokyo

and RIKEN Advanced Institute for Computational Science

have been designing and developing system software for

many-core based clusters. The current target platform is

based on the Intel MIC architecture as shown in Figure 1(a).

Compute nodes, each of which consists of many-core units

with a host CPU, are connected by Infiniband.

This architecture has two characteristics: a cluster of many-

cores and a cluster of regular PCs because many-cores and

host CPUs can share the same interconnect network. Since

the throughput of each core of a many-core is lower each
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(a)

(b)

Figure 1. Target Architecture

core of the host CPU and the limited capacity of memory

cache in the many-core, rich system services such as file I/Os

should be provided in the host CPU. Utilizing those two types

of clusters, two types of execution model have emerged: in

the first, number crunching applications run on many-core

clusters, and in the second, file I/Os of those applications

are performed on host CPUs. Since most number crunching

applications do not issue file I/O requests frequently, some

other data-intensive applications may run on host CPUs

during number crunching applications run on many-cores.

Figure 1(b) depicts the operating system kernel for the tar-

get architecture that we have been designing and developing.

The Linux kernel runs in the host CPU while a micro kernel

runs in many-core units.

An Accelerator Abstraction Layer (AAL) is designed to

hide hardware-specific functions and provide kernel pro-

gramming interfaces to operating system developers. AAL

resides in both host and many-core units. AAL in the host

is implemented as a Linux device driver. IKCL is the inter-

kernel communication layer that performs the data transfer

and signal notification between host and many-core CPUs.

SMSL is the system service layer on top of AAL that pro-

vides low-level kernel programming interfaces to operating

system developers.

A micro kernel for many-core units is to be implemented

on top of the AAL and SMSL. It provides the process and

thread management, file I/O interface, memory mapped I/O

with the host CPU, and a low-level low-latency commu-

nication facility. The Linux kernel runs in the host CPUs

to perform rich OS functions such as file systems, whose

footprints are large enough to pollute the memory cache of

many-cores if such a function were to be executed in many-

core units.

At this moment, DCFA has been implemented on top

of AAL instead of the micro kernel being designed and

implemented.

Figure 2. Data Transfer in DCFA

III. DESIGN

DCFA is targeted to implement direct data transfer for

many-core architectures (Figure 2). To be specific, the Infini-

band HCA must access the data buffers in many-core memory

directly, moreover, the many-core must issue commands

directly to the Infiniband HCA.

A. An overview of the Internal Implementation in Infiniband

The communication stack for the Infiniband Architecture

(IBA) [3] consists of different layers. The interface presented

by the Infiniband HCA to user-level software belongs to the

transport layer. A queue-based model is used in this interface.

The following queue structures are defined.

• Queue Pair (QP)

A QP consists of a pair made up of a Send Work

Queue (SQ) and a Receive Work Queue (RQ). The

SQ holds instructions needed to transmit data, and the

RQ holds instructions about where to place received

data. Communication operations such as send, RDMA

read and RDMA write are described in Send Work

Queue Request (Send WQR), and the receive operation

is described in the Receive WQR. Once one of these

WQRs has been submitted to a QP, an instruction

called a Work Queue Element (WQE) is placed on the

appropriate work queue. The Infiniband HCA executes

WQEs in the order that they were placed on the work

queue.

• Completion Queue (CQ)

Each work queue is associated with an individual or

shared Completion Queue (CQ). When the Infiniband

HCA completes a WQE, a Completion Queue Element

(CQE) is placed on the associated CQ. User-level soft-

ware can check the CQ to see if any WQR has been

finished.

To understand how the queues actually work, we studied

the internal implementation of the Mellanox Infiniband driver

by reading its source code [4]. As shown in Figure 3(a), every

queue consists of a queue buffer and a doorbell record. The

details are described below.

In a QP, the queue buffer is a virtually-contiguous memory

buffer allocated in the QP creation process, containing the

SQ and RQ, adjacently. Both the SQ and RQ are organized

as circular buffers accessible by user-level software and the

Infiniband HCA; WQEs are placed here. The doorbell record

is used to notify the Infiniband HCA that a new WQE has

been posted, and has been allocated in the PCI address space
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that is mapped for direct access to the HCA memory area

from the CPU.

In a CQ, the queue buffer is a virtually-contiguous circular

buffer accessible by user-level software and the Infiniband

HCA; CQEs are placed here. The doorbell record is more

like a mechanism to implement the circular structure. If we

describe the Infiniband HCA as a producer who produces

CQEs, and the user-level software as a consumer who con-

sumes CQEs, the consumer should ring the doorbell to notify

the producer after it has consumed a new CQE (It’s not

necessary to ring again if the consumed CQE is the same

as the previous one.). This is allocated in host memory.

The IBA also specifies memory management mechanisms.

The following two structures are defined.

• Memory Region (MR)

An MR describes a set of memory locations and their

access rights. A memory registration operation produces

an MR which contains the virtual address and the size

of the registered set of memory locations, a Local Key

(LKey) and a Remote Key (RKey). All the memory lo-

cations containing data buffers must be registered before

the Infiniband HCA can access them. The information

held by an MR is required when creating a WQR.

• Protection Domain (PD)

Since a node might communicate with many different

destinations, the IBA provides PDs to control whether

a QP can access the registered MRs or not. QPs are

allocated to, and memory locations are registered with

a PD. A QP can only access the MRs in the same PD.

A typical Infiniband communication processing task be-

tween two nodes can be described as having the following

stages (Figure 4(a)).

1) Device configuration

Configure the Infiniband HCA by writing configuration

commands to the PCI controller.

2) Infiniband configuration

Set parameters for the configurations that will be used

in the next stages (e.g., the maximum capacity of CQ,

SQ, and RQ).

3) Infiniband initialization

Initialize a PD, a CQ, and a QP.

4) MR registration

Register MRs for all the data buffers that will be used

to send or receive data. For RDMA communication, a

RDMA-able MR is usually prepared.

5) Connection

After all resources have been prepared, connect to the

other node and exchange the relevant QP information.

Then, the QP must be changed to the ”Ready To

Send” state before communication can be started. For

RDMA communication, it’s also required to exchange

the information held by the RDMA-able MR, and give

permission for the QP’s RDMA operation when modi-

fying the QP state.

6) Data exchange

Data can be exchanged in either Send/Receive mode or

RDMA mode.

• Send/Receive mode

Several previously prepared Receive WQRs are

usually pre-submitted to the QP on both the receiver

and sender sides before the connection stage. After

the connection has been made, the receiver waits

for a receive completion by polling the CQ, the

sender posts a Send WQR to the QP and waits for its

completion. Data is copied from the MR associated

with the Send WQR to the one in the Receive WQR.

• RDMA mode

A host posts a Send WQR that describes an RDMA

read/write operation, and then data is read from or

written directly to the reserved RDMA-able MR on

the remote host. After this operation, the host, issu-

ing the RDMA request, can confirm its completion

by polling its CQ, but there is no notification sent to

the remote host. The remote host can check the last

bit of the buffer in the RDMA-able MR to confirm

the completion of data transfer.

7) Infiniband destruction

Finally, it’s necessary to call destroy and deregister

functions to release all resources.

B. Design for Many-core Architectures

Based on the study of the internal implementation of the

Mellanox Infiniband driver, it’s clear that if a many-core can

access the queue buffers and the doorbell records directly,

it can issue commands to an Infiniband HCA. Since AAL,

introduced in Section II, has implemented both memory

mapping from many-core memory to host memory and vice

versa, it’s possible to move these memory areas to the many-

core side, and provide the mapped memory areas to the

Infiniband HCA, and in the same manner the data buffers

allocated in the many-core memory also become accessible

to the Infiniband HCA. The software interface of DCFA has

been designed and implemented on the basis of the above

analysis. It consists of a modified Mellanox Infiniband driver

placed on the host system, and an Infiniband communication

interface on the many-core side. To keep a similar view of

communication processing in many-core programs, the queue

structures are also defined in the many-core side interface.

Figure 3(b) describes the modified allocation of internal

structures.

• QP

The queue buffer is allocated in the memory area that

has been pre-mapped to the many-core memory. The

doorbell record allocated in the PCI address space

mapped to HCA memory area is provided to the many-

core side after mapping its memory location to a many-

core memory location. The SQ, RQ structures, and the

doorbell record are also defined in the QP structure in

the many-core side interface, thus many-core programs

can perform the same QP operations as on the host

system.

• CQ

Since the doorbell record is allocated as a host memory

location, both the queue buffer and the doorbell record

can be moved to the memory area that has been pre-

mapped to many-core memory. In the many-core side

interface, the CQ structure also holds pointers to them,

and consequently, the CQ operations can be executed by

many-core programs as usual.
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(a) in Original Infiniband (b) in DCFA

Figure 3. Allocation of Internal Structures

(a) in Original Infiniband (b) in DCFA

In (b), CMD (Command), NTF (Notification) and INFO (Information) are communication between the host and the many-core sides, implemented by using

IKCL, which was introduced in Section II.

Figure 4. Processing Sequence

At the time this paper is written, we have not yet designed

any memory management mechanism on the many-core side.

The allocation of MR and PD structures is described as

follows.

• Memory Region (MR)

The data buffers are allocated in the memory area that

has been pre-mapped to the many-core memory. The

memory registration still runs on the host side. The MR

structure defined in the many-core side interface holds

all the information returned by the host registration.

• Protection Domain (PD)

A PD structure is only defined on the host side.

Besides the internal structures, a communication scenario

for many-core architectures has also been designed and

implemented. The stages of an Infiniband communication

process that were described in Section III-A, can be divided

into four parts: resource initialization, which contains the

Infiniband initialization stage and the MR registration stage;

connection; data exchange; and resource destruction. The

initialization and connection parts have to be left on the

host side due to their heavy overhead, and consequently, the

destruction part also stays. Thus, the only part to be moved

to the many-core side is the data exchange part. Although the

Infiniband initialization and MR registration stages are also

defined in the processing on the many-core side, they only

create similar internal structures, no command is issued to the

Infiniband HCA. The communication scenario for many-core

architectures can be described as consisting of the following

stages (Figure 4(b)).

1) Device configuration

The host configures the Infiniband HCA by writing
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configuration commands to the PCI controller.

2) Infiniband configuration

The many-core sets the configurations, then sends con-

figuration information and an ”initialize” command to

the host.

3) Infiniband initialization

After receiving the command and information from the

many-core, the host executes this stage. The memory

allocation is performed as described at the beginning

of Section III-B. The completion notification and QP

initialization information which will be used in the data

exchange stage are sent to the many-core when com-

pleted. After receiving the notification and information

from the host, the many-core initializes its structures.

4) MR registration

The host registers all the MRs while the many-core is

executing initialization, then the completion notification

and MR registration information which will be used in

data exchange stage are sent to the many-core. After

receiving the notification and information from the host,

the many-core creates its MRs.

5) Connection

When the many-core decides to connect to the other

node, it sends a ”connect” command to the host, and

waits for a ”connected” completion notification.

6) Data exchange

After receiving the ”connected” completion notification,

the many-core can start to exchange data. Both the

Send/Receive mode and RDMA mode are supported.

Since all the queue structures have also been prepared

in the many-core side interface, the processing in both

modes is exactly the same as processing in the host.

7) Infiniband destruction

The many-core sends a ”destroy” command to the host

before the program exits. The host is responsible for

releasing all the Infiniband resources.

IV. EVALUATION

We performed all experiments on two Intel Workstations

with the configuration given in Table I. The DCFA evaluation

is based on the comparison between the results of the follow-

ing two experiments: many-core to many-core data transfer

over DCFA; host to host data transfer using the Infiniband

Verb API. Let’s call them ”DCFA” and ”host”, respectively.

The program scenarios of the two experiments have already

been described in Section III-B and Section III-A, and both

the Send/Receive and RDMA write are measured. All of

the experiments are conducted in Ping-Pong fashion between

the two workstations, and the latency result is derived from

Round Trip Time.

The relative latency of ”DCFA” in both Send/Receive

mode and RDMA write mode is shown in Figure 5. Be-

cause of the overhead of accessing into many-core memory,

”DCFA” is always slower than ”host”. However, when the la-

tency of data transfer between two many-cores is much larger,

this overhead can be ignored. ”DCFA Send/Receive” got the

worst result, 1.50 times slower than ”host Send/Receive”,

when message size is 128bytes; the best result, the same

latency with ”host Send/Receive”, when message size is

128Kbytes. ”DCFA RDMA write” got the worst result, 2.22

Table I
SERVER ARCHITECTURE USED IN THE EXPERIMENTS

Machine Intel Workstation
M/B Intel S5520SCR
CPU Intel Xeon X5680 3.33GHz x 2
Infiniband HCA Mellanox MT26428
Card Knights Ferry x 1
Operating System Red Hat Enterprise Linux Server release 6.1
Mellanox OFED Version 1.5.3

Figure 5. DCFA SendReceive/ host SendReceive and DCFA RDMA write/
host RDMA write

times slower than ”host RDMA write”, when message size is

64bytes; the best result, the same latency with ”host RDMA

write”, when message size is 4Kbytes.

As a future work of this paper, an MPI library over

DCFA has been planned now, we hope the comparison result

between the MPI on host and the MPI on many-core can be

published in our next paper.

V. RELATED WORK

A. GPUDirect

The GPUDirect technology, first released in June 2010,

accelerates the communication in GPGPU-based cluster sys-

tems [5]. Prior to the release of this technology, each GPU-

to-GPU communication had to complete the following steps

(Figure 6(a)). First, the GPU copies the data from the GPU

device memory to the host memory. Second, the host CPU

copies the data from the GPU dedicated host memory to the

host memory available for the Infiniband HCA. Finally, the

Infiniband HCA sends data to the remote node. GPUDirect

accelerates the processing by eliminating the second step

(Figure 6(b)).

B. Mvapich for GPGPU-based clusters

Hao Wang, et al., also introduced a method for how the

Message Passing Interface (MPI) uses Infiniband in GPGPU-

based clusters [6]. The communication between two GPUs

can be separated into three data transfer stages. The first stage

is from the sender’s GPU device memory to its host memory;

the second is from the sender’s host memory to the receiver’s

host memory; the third is from the receiver’s host memory

to its GPU device memory. This paper shows an innovative

approach to improving the performance of the above process

by ”offloading” MPI datatype packing and unpacking on to a
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(a) without GPUDirect

(b) with GPUDirect

Figure 6. Data Transfer in GPU-to-GPU communication

GPU device for non-contiguous datatypes, and ”pipelining”

all data transfer stages. Obviously, the communication in

GPGPU-based clusters still needs host assists.

C. OPIOM

OPIOM [7] stands for Off-Processor IO with Myrinet

in parallel file-systems. As a basic operation, the remote

read, which performs a data transfer from server disks to

the memory space of remote client, consists of three data

movements. The first movement is from the disks to the

kernel memory space, the second one is from the kernel

memory space to user-level application memory space, and

the third one is from the user-level application memory space

to remote node via Myrinet. OPIOM eliminates the first two

movements, so that data can be moved directly from disks to

the remote node via Myrinet. The implementation is based on

SCSI devices and a Myrinet interface. However, this design

is technically possible for all the devices which can provide

DMA engines and the PCI address space mapped to its own

memory space.

VI. CONCLUDING REMARKS

This paper has designed a direct communication facility,

called DCFA, for many-core architectures, especially the Intel

MIC architecture, connected to the host via PCI Express with

the Mellanox Infiniband HCA. By distributing the internal

structures of the HCA to memory areas of the host and

the many-core unit, the many-core unit may transfer its

data directly to/from a remote many-core unit or a remote

host. Preliminary results show that, for large data transfer,

the latency of DCFA delivers the same performance as

that of host to host data transfer. Though DCFA has been

implemented based on the Intel MIC architecture, the DCFA

method is applicable to other many-core based accelerators

if they are capable of mapping PCI Express memory, issuing

interrupts to the host, and writing commands to a PCI Express

device.

There are three directions for future research, as follows.

In one, the same API as the Infiniband Verb API for many-

cores is transparently implemented with DCFA extensions.

Using this transparent Infiniband Verb API, an MPI library

can be ported to many-core architectures.

The second direction involves offloading some heavy func-

tions of the MPI library to the host CPU or one core of

the many-core unit. Because, relative to multi-cores, many-

cores have small memory caches per core and limited mem-

ory bandwidth per core, the footprint in the cache during

execution of both the application and the communication

library should be minimized. Heavy-weighted functions, such

as collective communication and communication using data

types, might be considered as candidates for offloading.

The third direction might involve a smart communication

layer designed and implemented so as to provide cache-

aware rich communication functions. Since this layer does

not involve the host CPU, much low latency communication

can be accommodated.
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